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The development of a laminar boundary layer upstream of both two- and three- 
dimensional obstacles mounted on a plane wall is considered. The motion is 
impulsively started from rest, and it is shown that the boundary layer upstream of the 
obstacle initially develops independently from that on the obstacle itself. Numerical 
solutions for the unsteady boundary-layer flow on the plane wall are obtained in both 
Eulerian and Lagrangian coordinates. It is demonstrated that in both situations the 
flow focuses into a narrow-band eruption characteristic of separation phenomena at 
high Reynolds number. For the three-dimensional problem, results are obtained on a 
symmetry plane upstream of the obstacle which indicate the evolution, and subsequent 
sharp compression, of a spiral vortex in the near-wall flow in a manner consistent with 
recent experimental studies. The eruptive response of the two-dimensional boundary 
layer is found to be considerably stronger than the corresponding event in three 
dimensions. Calculated results for the temperature distribution are obtained for the 
situation where the wall temperature is constant but different from that of the 
mainstream. It is shown that a concentrated response develops in the surface heat 
transfer rate as the boundary layer starts to separate from the surface. 

1. Introduction 
Situations where a developing boundary layer on a wall encounters an obstacle 

downstream are commonplace. In this study, obstacles having a height much larger 
than the boundary-layer thickness are considered and, in such circumstances, a strong 
adverse pressure gradient is induced upstream of the obstruction. Two specific (but 
representative) obstacles are studied in detail, namely (i) a three-dimensional obstacle 
consisting of a circular cylinder mounted normal to a flat plate, and (ii) a two- 
dimensional ridge constituting half a circular cylinder mounted on a plane wall. A 
schematic diagram of both obstacles is shown in figure 1 along with the boundary-layer 
structure expected for a high Reynolds number laminar flow. In both configurations, 
a polar coordinate system is defined with origin at the cylinder centre. In this study the 
principal interest is in the boundary layer upstream of the obstacles which is labelled 
region I in figure 1 and which is defined by 0 + 7c. Let U denote the speed of the inviscid 
motion at large distances upstream, with the flow being from left to right; in both 
situations the mainstream flow just outside the boundary layer is decelerated to rest at 
a stagnation point in front of the obstacle. For the two-dimensional ridge, fluid 
particles just outside the boundary layer are then accelerated away from near the 
frontal stagnation point up and over the obstacle; on the other hand, in the three- 
dimensional flow, fluid particles near the symmetry plane are eventually deflected 
around the cylinder upon approach to the frontal stagnation region. In both situations, 
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FIGURE 1. Sketch of the geometry and boundary-layer structure (not to scale): 
(a) circular cylinder mounted normal to a wall, (b) two-dimensional ridge. 

the upstream boundary layer is exposed to a streamwise pressure gradient which is 
purely adverse ; for high Reynolds numbers Re, recent theoretical developments (Van 
Dommelen & Shen 1982; Elliott, Cowley & Smith 1983; Cowley, Van Dommelen & 
Lam 1990) suggest that under such circumstances the upstream boundary layer will 
separate in an inherently unsteady process leading to a local boundary-layer eruption. 
Here, following Sears & Telionis (1975) and Van Dommelen & Shen (1980), the term 
separation is used to denote a process wherein a thin boundary layer develops strong 
outflows and starts to interact with the external flow for the first time, thereby 
separating from the surface. 

Consequently, it appears that the upstream boundary-layer motion may be 
inherently unsteady at high Re and exhibit a tendency to interact strongly with the 
external flow intermittently. Recent experimental and computational studies support 
this expectation. Acarlar & Smith (1987) observed the fluid motion within a subcritical 
boundary layer in the vicinity of a hemispherical bump mounted on a flat plate, as well 
as that associated with a variety of other similar obstacles. In all situations, the flow 
near the obstacle was found to be inherently unsteady and characterized by the 
periodic creation of hairpin vortices in a sequence of events apparently related to a 
viscous-inviscid interaction with boundary layers in the vicinity of the obstacle. A 
similar but somewhat more complex phenomenon has been observed by Smith, 
Fitzgerald & Greco (1991) in their study of the motion past the cylindrical obstacle 
shown in figure 1 (a). In this geometry, necklace vortices were observed to form and 
wrap around the obstacle, having legs that trail downstream of the cylinder. At 
sufficiently high Re, the vortex motion near the cylinder is inherently unsteady with 
new necklace vortices apparently forming near the upstream symmetry plane and 
subsequently spreading outward to engirdle the obstacle. At a certain stage, a sharply 
eruptive process in the vicinity of the upstream symmetry plane appears to lead to the 
release of each necklace vortex (Doligalski, Smith & Walker 1994) which is then 
convected downstream toward the cylinder. The endwall boundary layer is observed to 
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be laminar over a wide range of large Reynolds numbers, but as a consequence of the 
vortex-creation processes in the vicinity of the obstacle, the motion there is an 
unsteady complex periodic flow. Recently Visbal (1991) and Hung, Sung & Chen 
(1991) have calculated this flow development at moderate Reynolds numbers using a 
simulation based on the full three-dimensional Navier-Stokes equations. In both 
studies, a periodic behaviour was found corresponding to vortex evolution and 
subsequent vortex release in a manner qualitatively similar to that observed by Smith 
et al. (1 99 1). Unfortunately, the full three-dimensional problem is extremely complex 
and because of computer limitations, Visbal (1991) found it was not possible to 
adequately resolve a number of features of the unsteady flow or to extend the 
calculations into the high Reynolds number regime. 

In the present study, the boundary-layer development in the limit of large Reynolds 
number will be considered for both obstacles shown in figure 1. The flow is taken to 
be impulsively started from rest since this is the simplest possible initial condition. Here 
the main objective is to understand the nature of the flow field at later times and 
whether or not strong interactions occur; therefore, the initial condition used may be 
regarded as mathematically convenient and the simplest way of ascertaining why 
periodic eruptions are observed in the experiments. Immediately after the impulsive 
start, a set of thin boundary layers forms on all solid surfaces (as shown in figure l), 
and outside these layers the motion is initially inviscid and irrotational. If all velocities 
and lengths are made dimensionless with respect to the flow speed at infinity U and the 
cylinder radius a, the inviscid flow has radial and polar velocities given by 

respectively, in both cases. The inviscid flow remains unaltered until one or more of the 
boundary layers becomes eruptive, thereby introducing vorticity into the external flow. 
In the following sections the nature of the boundary-layer development will be 
examined for both the two- and three-dimensional problems with the main emphasis 
on the upstream layer. Critical features for the three-dimensional problem occur on the 
upstream symmetry plane and attention will be focused there in this study. Although 
only two specific obstacles will be examined in detail here, it will be argued that the flow 
development should be similar for a range of similar obstructions. 

In many applications, such as gas turbines, heat transfer occurs in the endwall 
boundary layer, and it is of interest to understand the influence of the unsteady flow 
structure on the surface heat flux. For both obstacles, calculations were carried out for 
the evolving temperature field in the boundary layer for the case where the wall is 
maintained at a constant but different temperature from that of the mainstream. The 
results indicate that the developing unsteady flow in the boundary layer has a 
significant influence on the surface heat transfer rate, which develops sharp streamwise 
variations as the boundary layer proceeds toward separation. 

2. The Eulerian formulation 
Consider first the formulation for the symmetry plane in the three-dimensional 

problem; it will be subsequently shown that the two-dimensional ridge can be viewed 
as a subset of this formulation. As depicted schematically in figure 1 (a), upstream and 
downstream symmetry surfaces occur in the plane z = 0, and here the boundary layers 
(labelled 1 and 3 in figure l a )  develop independently of the other shear layers that 
occur on the endwall and the cylinder, at least for an initial period following the 
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impulsive start (Ersoy & Walker 1987). A Cartesian coordinate system (x, Y, z ) ,  with 
origin at the centre of the base of the cylinder, is adopted with corresponding velocity 
components (u, V,  w); here all lengths and velocities are made dimensionless with 
respect to the cylinder radius a and the uniform flow speed U far from the obstruction. 
respectively. The Reynolds number, defined by Re = Ua/v, is assumed large where v 
is the kinematic viscosity. Scaled boundary-layer variables are defined by 

y = Re1/' Y,  u = Re'/' V ,  (2) 

and in the vicinity of the symmetry planes, the velocity components have the form 
(Ersoy & Walker 1987) 

(3) u = u(x, y ,  t )  + O(z'), u = u(x, y ,  t )  + O(22), w = z q x ,  y ,  t )  + O(23), 

where 6 = limz+o aw/2z. Upon defining a dimensionless temperature difference by 

(4) 

it follows that since the temperature field is also symmetric about the plane z = 0, 

e = 8(x, y ,  1 )  + O(z2), ( 5 )  
for small z.  Thus the boundary-layer equations describing the flow on the symmetry 
plane are 

where Pr is the Prandtl number and U,(x),  kz(x) are the mainstream velocity 
distributions at the boundary-layer edge. It may be shown using equations (1) that 

I 

x 
G',(x) = 1 -7, 

L L W,(x) = -- 
x3 

On the upstream symmetry plane (labelled 1 in figure la) where x lies in the range 
( -  co, - l), the external streamwise velocity decelerates from 1 to rest at the cylinder, 
and near the plane the spanwise flow is away from the plane z = 0; here the boundary 
layer is exposed to a purely adverse streamwise pressure gradient. On the downstream 
symmetry plane (labelled 3 in figure 1 a), the external streamwise velocity accelerates 
away from the cylinder at x = 1 to a unit speed as x+co, the spanwise flow is toward 
the symmetry plane, and the boundary layer is exposed to a continuously favourable 
streamwise pressure gradient. Evidently, the most interesting behaviour can be 
expected on the upstream symmetry plane. 

The continuity equation (6) can be identically satisfied by introducing two functions 
$ and lif defined by 

(1 1 a-c) 
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In view of the impulsive-start condition, Rayleigh variables are introduced according 
to 

(12a-c) n = -  Y 2tl,,, + = 2t1“ u,(x) ~ ( x ,  n, t), 4 = W 2  FW(x) ~ ( x ,  n, t), 

and it is convenient to write the governing equations in terms of normalized velocity 
components u1 and u, defined by 

* 

u = UmU1, 6 = w, u2. (1 3) 

It is easily shown that u1 = aY//c?n and u, = a@/an. In addition, to allow a compact 
notation, the dimensionless temperature difference will be denoted by u3 = 8 ;  then the 
independent variables (u l ,  u,, U J  all vary from 0 to 1 across the boundary layer and 
satisfy equations derived from (7)-(9) which are of the form 

i = 1,2,3. (Note that no summation is implied in (14).) The coefficients in (14) are given 
by 

, Q = -4tU,u,, (15) 

and 
r, = 1, r, = UL(X), w, = - UL(x)u,, 

Here the prime denotes differentiation with respect to x. 
The boundary conditions associated with the system (14) are 

u i = O  at n = O ;  u i+ l  as n+co. 

As f z 0 ,  equations (14) reduce to 

a2u. au .  
an’ an 

q++2n- = 0, 

for i = 1, 2, 3 and the solutions, satisfying conditions (19) are 

(21) 

which define the initial conditions for the system (14). As x+ k co, U,  + 1 and 
+ 0 and the system (14) also reduces to (20); thus (21) also provides the boundary 

conditions as x-t f co for all t .  Finally, both upstream and downstream boundary 
layers develop independently of one another initially, and the solutions at the 
stagnation points give the final set of boundary conditions. It may be shown that (14) 
becomes 

u1 = u, = erfn, u3 = erl(n Pr’”), 
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(23) 
- 

XI = u; (1 -u4 ,  xz = Wm(l - U i ) ,  x3 = 0. 

Note that in (22) and (23), U k  and @= are evaluated at x = & 1 using (10). The 
stagnation-point solutions also satisfy the boundary conditions (19) with initial 
conditions (21) and must be found numerically. The formulation in (14)-(23) applies 
to a general flow in a plane of symmetry. The two-dimensional equations may be easily 
obtained by discarding the cross-stream momentum equation (i = 2) and substituting 

= 0 in the streamwise momentum (i = I )  and energy (i = 3) equations. For the 
specific case considered here, the external velocity distribution for the plane-of- 
symmetry problem is given by (10). For the two-dimensional problem, the streamwise 
velocity distribution is the same and Pm = 0. 

Starting from the initial conditions (21), the objective is to advance the solution of 
(14) and (22) forward in time. It is convenient to introduce transformations of the form 

x = h,(i), n = k ,  tan($nri). (24 a, b) 

Here the variables (.f,ii) will be referred to as computational coordinates and are 
introduced in order that: (i) the calculations are performed on a domain of finite 
extent, and (ii) grid points may be clustered in regions in the physical domain where 
intense variations develop in the flow properties. Two transformations were considered 
for the streamwise direction, corresponding to different mappings h,(R), and each will 
be described subsequently; in both cases, the physical streamwise extent was mapped 
onto the interval (0,1]. The second of transformations (24) maps the range [0, a) in n 
to [0, 1) in r i ;  here k, is a parameter which controls the mesh spacing in the physical 
space, with smaller values of k ,  producing a more concentrated mesh near the wall (for 
a uniform mesh in ti). In computational coordinates, the system (14) becomes 

where 

and 

The primes denote differentiation with respect to the argument. 
Two streamwise transformations were used in the course of the integrations. The 

downstream symmetry plane involves a boundary-layer motion in a purely favourable 
pressure gradient; consequently, it emerges that the flow development does not contain 
any interesting features and results will be presented only for the upstream boundary 
layer, where the pressure gradient is everywhere adverse. The first mapping will be 
referred to as the ‘algebraic’ transformation and has 

x = h,(i) = - l/i, hj(2) = I/%?. (28) 
In view of ( loa) ,  this is akin to a Gortler transformation. For a uniform mesh spacing 
in 2, this mapping clusters points in the physical space near the stagnation point 
defined by 2 = 1. The second transformation will be referred to as the ‘tangent’ 
transformation ; it was developed pragmatically based on the observation that an 
intense streamwise variation in the flow field was eventually found to occur (using the 
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algebraic transformation) at a location, denoted by xo, upstream of the stagnation 
point. Consider the mapping 

x=h,(R)=x,+k,tan - --1 , [I(:, I] 
where k, is a constant and 

x, x 

It may easily be confirmed that this mapping is one-to-one for - cc < x < - 1 and 
specifically that x = -a, x,, - 1 transform to 5 = 0, R,, 1, respectively. Upon 
differentiating (29), it follows that 

h : ( ~ )  = nk, 7secz[-(-- 7c 2 I)], 
2x, 2 x, 

which is a minimum at 2 = R,, for fixed k, and Z0; consequently, the maximum 
clustering of points occurs in physical space at x = x,. The parameter k ,  controls the 
resolution near x,, with a smaller value of k,  producing a finer mesh in physical space 
near x,. The specific choice of x, and k, was motivated from a preliminary set of results 
obtained using the algebraic transformation (28) and will be discussed subsequently. 

The numerical integrations may be carried out efficiently and with good accuracy in 
the Eulerian formulation for a substantial portion of the total integration time. 
However, the boundary layer on the upstream symmetry plane eventually develops 
strong outflows and evolves toward a sharply focused eruption. As discussed by Van 
Dommelen & Shen (1980, 1982), Cowley et al. (1990) and Peridier, Smith & Walker 
(1991), it is generally not possible to make progress with an Eulerian integration under 
such circumstances unless some type of time-dependent adaptive remeshing algorithm 
is adopted (see, for example, Adams, Conlisk & Smith 1995). However, it is believed 
that the most attractive alternative is to continue the calculations in Lagrangian 
coordinates, which are described next. 

3. Lagrangian formulation 
The advantages of the Lagrangian description for the calculation of eruptive 

boundary layers were originally described by Van Dommelen & Shen (1980, 1982) for 
two-dimensional flows and the approach in three dimensions has recently been 
discussed by Van Dommelen & Cowley (1990) and Cowley et al. (1990). Let (&7, <, t’) 
denote Lagrangian coordinates with ( 6 , ~ )  and 6 denoting the initial particle positions 
in the symmetry plane and the initial normal distance of a particle from the symmetry 
plane, respectively; t’ denotes time in the Lagrangian system. Fluid particles initially 
on the symmetry plane remain there for all time (except perhaps at isolated points), and 
since z(& 7, c, t’) is expected to be a regular function, it follows from a Taylor series 
expansion that the z particle positions near the symmetry plane at < = 0 have the form 

where z” = lime,, &/a<. It follows that on the symmetry plane 

az aZ - _ -  - = O  at < = 0 .  
86 a7 (33) 
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In addition, the spanwise velocity vanishes on the symmetry plane (cf. (3)) and near the 
symmetry plane is of the form 

(34) w = z f i  = p(5, q, t') fig, q, t') + . . . . 
Since w = az/at', it follows that z" and 6 are related by 

( 3 5 )  
a2 - _  c?t, - 26. 

The transformation laws from the Eulerian system (x, y ,  z, t )  to the Lagrangian are 
given in the Appendix. The continuity equation (6) becomes 

and the momentum and energy equations (7)-(9) transform to 

where the operator D, is defined by 
(37a-c) 

( 3 8 )  

The associated equations for x and z" are 

(39) 
ax a 
-- - u, 
atf at' 

-(log 151) = kC, 

and the boundary conditions are 

u = f i = B = O  at q = O ,  u+U,, kC+R,, B - t l  as 7+m.  (40) 

The initial conditions follow from (A7) and are 

x =  E, y = q ,  z"= 1 at t '= to (41) 
for all (<, q), along with specified distributions of u(&q, t'), fi(<, 7, t') at the initial 
instant to. 

As in the Eulerian formulation, it is convenient to introduce normalized variables 
defined by (13), where now u1 and u, are functions of (5, q,  t'). It is readily shown that 
(37a) and (37b) become 

Again computational coordinates are defined on finite intervals according to 
transformations of the form 

x = &(.?), 5 = h&), 7 = k, tan (imj), (43 a-c) 

defining 2, [, and in the interval (0,l) ;  here k, is a parameter which can be selected 
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to control the spacing of the mesh normal to the wall and h, and h, are mapping 
functions which will subsequently be described. If the temperature variable 0 is denoted 
by u,, equations (37c), (42a) and (42b) are all of the form 

for i = 1, 2, 3, where the coefficients are defined by 

(45 a-c) 

where the primes denote differentiation with respect to the argument, and 

2 
Z(+) = -cosz(;n+), n = 

nkl 
in addition, 

A ,  = A ,  = 1, 

- dU, - dU, 

- U ,  d F a  - - U dF, 

A, = Pr, 

w, = - - - M I ,  r, =- 

w ul- w, u2, r, = 00- + em' 

dx dx ' 

@a dx W, dx 2 -  

and W, = 4 = 0. Finally, the associated equations for i and z" are 

2t' hj. at' 
a2 -UIUm a * 

, -(log 151) = u2 w,. 

Henceforth, the prime on the time variable t' will be dropped for convenience. 

velocities and temperature, it follows that 
Next the boundary conditions are considered. From the definitions of the normalized 

ui = 0 at f = O ;  u i + l  as f + l .  (47) 

The transformations introduced in (43) will be selected so that [ = 0 corresponds to 
locations far upstream of the obstacle (defined by c-+ - a), and here (as previously 
discussed) the solution is a plane-parallel Rayleigh flow (cf. (2 1)). Consequently, 

y = r ,  u1 = uz = erf (2;,2) - 
= erf ( 2(&2) , 

at g  ̂= 0 for all t. The final boundary condition applies at the stagnation point 
immediately upstream of the obstacle defined by 5 --f - 1 or, in transformed coordinates, 
by $+ 1. Fluid particles which are initially at the stagnation point remain at that same 
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value of x for all t ,  and hence ax/C?T = 0 at [ = - 1. Furthermore, x may be written as 
a Taylor series about [ = - 1 according to 

X ( [ , T ,  t )  = - 1 +(C+ l)Z(r, t ) - t  ... , Z = 21 (49) 

It is readily shown using (39) and (45n that at the stagnation point 6 = - 1, (37) 
reduces to 

{=-I' 

where the Ai are defined by (45h-1); the xi are defined by (23) and are evaluated at 
[ = - 1. In addition, 

with Z defined in (45f). The associated equations for the dependent variables 2 and 2 
are 

with initial conditions 

In (52), U &  and 

g=z"=1.  

are evaluated at x = - 1 .  

(53) 

4. Computational methods 
The calculations were all started at t = 0 using the Eulerian formulation described 

in 92. A number of mesh sizes were used as a check on the accuracy, and the results 
presented here are based on a mesh with 201 and 101 points in the streamwise and 
normal directions, respectively, which was ultimately determined to provide good 
resolution; the accuracy was checked by running solutions on a 401 x201 mesh. 
Typical values used for the time step were 0.001 and Crank-Nicolson approximations 
were made for the interior equations (25) and the stagnation-point equation (22) 
(written in terms of the variable 6). Central differences were used for all spatial 
derivatives, and the finite-difference approximations are therefore second-order 
accurate in space and time. The solution of (22) was first advanced a time step and then 
the solution of (25) was advanced using a factored alternating direction implicit (ADI) 
method similar to that described by Peridier et al. (1991). In transformation (24b), a 
stretching factor k ,  = 1 was determined to be satisfactory, and preliminary calculations 
using the algebraic streamwise transformation suggested an intensifying region in the 
flow near x = - 1.8; refined Eulerian calculations were then carried out using the 
tangent transformation (29) with x, = - 1.8 and a stretching factor k, = 2 / ~ .  The 
algebraic and tangent transformations with these values of x, and k, will subsequently 
be referred to as mesh 1 and mesh 2, respectively. 

During the initial development, the flow field is smooth and the algorithm passes 
through each time step in 2-3 global iterations ; moreover, forward-backward 
differencing is not required. In general, calculations in the Eulerian formulation are 
easier to carry out and much more efficient than in the Lagrangian frame, provided 
that intense variations do not develop in the streamwise direction. Such variations do, 
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however, start to occur as a boundary layer evolves toward separation, and eventually 
it proves impossible to obtain good resolution using the Eulerian formulation. It is 
worthwhile to note that in purely two-dimensional flows, the failure of the Eulerian 
algorithm is generally found to be fairly dramatic with the development of ‘spiky’ 
behaviour in the solution (see, for example, Doligalski & Walker 1984). However, the 
failure in the plane-of-symmetry flow considered here is somewhat more subtle, being 
characterized by the development of unrealistic wiggles of growing amplitude in the 
numerical solution, without an outright failure of the calculation. In fact, it proved 
possible to perform calculations in the Eulerian formulation with some meshes up to 
times beyond what was eventually determined to be the separation time t,; at first 
glance, the calculated Eulerian results appeared to be plausible, but did not hold up 
under closer scrutiny. Thus, at least for the plane-of-symmetry flow considered here, 
incorrect numerical results are much easier to obtain than in known examples of two- 
dimensional separation. 

The calculation scheme can be switched to the Lagrangian formulation at any time 
to, provided to is not close to the separation time t,. In the integrations, a separation 
singularity was ultimately detected at t ,  = 5.2, to two significant figures. It is more 
efficient to remain in the Eulerian formulation for as long as possible, and calculations 
were carried out with switch times ranging from to = 3.5 to 4.5; of course, the results 
must be essentially independent of the value of to employed. At to the initial values of 
the particle positions are given by (41). The same transformations were used in (24a) 
and (43a,b), and it follows that 2 = f: at t = to. Furthermore, since y = 7 at t = to, 
using (12a), (24b) and (43c), it follows that 

2t:l2 k ,  tan (+mi) = k, tan (imj). (54) 

Consequently if the same mesh is used in n” and i for both formulations, the stretching 
factor in the Lagrangian system is related to that adopted in the Eulerian system by 

k, = 2tii2 k,. (55 )  

Therefore, the Eulerian solution for the ui obtained from (22) and (25) was then used 
directly to initiate an integration of (50) and (44), respectively, forward in time within 
the Lagrangian system; in this manner, no interpolation is required to obtain the initial 
conditions. For the Lagrangian calculations, a second-order upwind-downwind scheme 
(Peridier et al. 1991) and a factored AD1 method were used. 

The Lagrangian formulation is most effective in regions of the boundary layer where 
the pressure gradient is adverse and sharply focused outflows start to develop. In 
regions of favourable pressure gradient or when relatively long periods of time elapse, 
the Lagrangian calculations tend to become less effective. This is because fluid particles 
which are initially close together eventually become far apart. In such circumstances, 
the gradients such as axlag become large and the finite-difference equations associated 
with the approximations to (44) tend to become ‘stiff’ and lose the property of 
diagonal dominance; when this happens the progress of the iterations slows at each 
time step. This problem can be alleviated for a while by introducing forward-backward 
differencing for au,&and au,/ai as discussed by Peridier et al. (1991). However, unless 
the time step is progressively reduced to very small values, wiggles start to develop in 
the calculated results and soon the progress of the integration slows to an imperceptible 
crawl. 

This problem can be avoided by periodically remeshing during the course of the 
Lagrangian integration. This process involves interrupting the Lagrangian integration 
and constructing the Eulerian field through the use of the continuity equation. This 
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solution then serves as the new initial condition to initiate further Lagrangian 
calculations in the next cycle. It may be noted that remeshing can be done repeatedly, 
but the Eulerian solution must be fairly smooth since interpolation is involved in the 
process; thus remeshing must be avoided at times close to separation. 

Remeshing is carried out as follows. The continuity equation (36) in computational 
coordinates is 

where the primes denote differentiation with respect 
characteristics are lines of constant 2 defined by 

(56) 

to the argument. The 

where s  ̂is a parameter along the characteristic. These equations were integrated from the 
wall at $ = 0 at any fixed value of f using a second-order predictor-corrector scheme 
to produce values of ?(t, i j ,  t )  along lines of constant x. In these integrations the step 
in s  ̂ was adjusted to produce values of .9 in equal increments. The values of u6 were 
obtained at these points through bilinear interpolation, hence providing the velocity and 
temperature field on a rectangular mesh in the (2 ,  j?)-plane; higher-order interpolation 
schemes were also used but were found to give essentially the same results, since the ui 
fields are smooth and well-resolved with the spatial meshes used in the present 
integrations. The numerical details of the remeshing will be discussed subsequently. 

5. Calculated results 
Instantaneous streamlines in the upstream boundary layer for the plane-of- 

symmetry problem are shown in figure 2 at various times in the physical plane; for these 
results the switchover time from the Eulerian to Lagrangian calculations is to  = 4. These 
plots were obtained by first integrating (1 1 a) and (1 1 c) along lines of constant 2 to find 
@ and 4, once the values of u1 and u2 were obtained on a rectangular (a,?) grid; the 
normal velocity u is then calculated from (1 1 b). Immediately after the impulsive start, 
the instantaneous streamlines are deflected toward the endwall, and subsequently 
2u1/2y at y = 0 becomes zero at x = - 1 at t = 0.381. Thereafter a saddle point of 
attachment appears on the wall (denoted by S1 in figure 2a) and subsequently moves 
upstream; since the limiting wall streamlines on the symmetry plane are toward this 
point while the spanwise flow is away from it, S1 is a three-dimensional point of 
attachment. Note that there is a corner region between the right boundary of the plot 
in figure 2(a) and the cylinder (as shown in figure 1 a) ;  this region is passive (at least 
initially) and does not influence the solution in the upstream boundary layer. With the 
passage of time, the point of attachment moves progressively upstream. Eventually 
another saddle point S2 develops on the limiting streamline which terminates at the 
saddle point of attachment S 1 as shown in figure 2 (b). As shown in figure 2 (c )  a spiral 
focus (denoted by F1) opens up, and the saddle point S2 starts to move toward the wall 
as the point of attachment S1 continues to move upstream. This process continues as 
shown in figures 2(d), 2(e) and 2(, f ) ;  it may be noted that as the spiral focus moves 
upstream, it appears to undergo a process of streamwise compression until at t ,  = 5.2 
a separation singularity occurs. The evolution of the spiral focus on the symmetry 
plane is evidently the beginning of the formation of the necklace vortex observed in 
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FIGURE 2. Evolution of the instantaneous streamlines on the upstream symmetry plane: 
(a) t = 1.0, (b) t = 3.25, (c) t = 3.5, (d )  t = 4.0, (e) t = 4.5, (f) t = t, = 5.2. 

experiments (Smith et al. 1991). However, since the present study only treats the 
symmetry plane, it is not possible here to address the interesting question of how the 
developing vortex spreads out into the outboard endwall boundary layer. The 
instantaneous streamline patterns shown in figure 2 near the saddle point of 
attachment S1 are essentially similar to those found in Visbal’s (1991) calculations of 
low and moderate Reynolds number flow, with the motion being characterized by flow 
toward the wall. As discussed by Visbal (1991), various authors have conjectured a 
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FIGURE 3. Equivorticity lines at (a) t = 3.5, (b)  t = t,. 

‘standard’ streamline topology, in which S1 was a saddle point of separation (with flow 
away from the wall), in order to interpret certain flow visualization studies. The present 
results show that the ‘new’ topology described by Visbal(l991) is observed in the limit 
as Re +m and is therefore likely to be characteristic of a wide Reynolds number range. 
It may be noted that as the boundary layer evolves toward separation, the saddle point 
S2 does move very close to the wall and S1 (cf. figure 2f), thus almost giving the 
appearance of flow away from the wall. However, S2 does not reach S1 by t,, and in 
a narrow region the flow is still toward Sl  at the wall. 

The sharp focusing of the boundary-layer flow into a band which is narrow in the 
streamwise direction is typical of separation phenomena in two-dimensional boundary 
layers (Van Dommelen & Shen 1980, 1982; Peridier et al. 1991); this behaviour will 
also be encountered in the present study of the boundary layer upstream of the two- 
dimensional ridge. The ‘spiky’ nature of the event in the plane-of-symmetry flow is not 
as prominent in the streamline patterns shown in figure 2cf> as in known two- 
dimensional realizations of boundary-layer separation. However, the sharply focused 
nature of the event can be seen in the temporal development of the vorticity field which 
is shown in figure 3. At t = 3.5 in figure 3(a) ,  the contours of constant transverse 
vorticity, defined by 0 ,  = - i3u/i3y (to leading order in the boundary layer}, are shown. 
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Throughout most of the field w, is negative, but there is a growing region of positive 
vorticity in the corner which is due to the reversal of the streamwise velocity there 
caused by the obstacle. There is a zero vorticity line (L), = 0 present in the field at 
t = 3.5, and theoreticalconsiderations indicate (see Cowley et al. 1990) that if separation 
occurs, a singularity will develop somewhere along this line. Note that on the symmetry 
plane both of the other vorticity components are zero. In figure 3 (h), the equivorticity 
lines are plotted just prior to separation, and it may be seen that the vorticity field and 
the zero vorticity line focus into a sharp spike, reminiscent of two-dimensional 
separation phenomena (Van Dommelen & Shen 1980, 1982; Peridier et al. 1991) and 
predicted by three-dimensional theories (Van Dommelen & Cowley 1990; Cowley et al. 
1990). 

The solution of the continuity equation (56) may be written in the form 

where the integral is along a path of constant x passing through (t, 7) and originating 
on the wall. It is evident that a singularity occurs at t = t ,  when either 

The first two conditions are the same as in two-dimensional flows, where they imply 
that a fluid particle (originating at (5,' 7,)) has been compressed to zero streamwise 
thickness and has therefore grown infinitely long in a direction normal to the wall. In 
the plane of symmetry, severe streamwise compression is also implied by the first two 
conditions (59); however because a particle can also expand in the spanwise direction, 
the normal growth of the boundary layer is not as prominent as in two-dimensional 
flows. The third condition in (59) implies that the spanwise extent of the fluid particle 
is compressed to zero thickness, and once again the particle must grow infinitely large 
in the normal direction. However, this latter situation does not occur in the present 
problem, and only the first condition in (59) is satisfied with z" remaining positive 
everywhere for all times. Figure 4 shows the streamwise and cross-stream displacement 
thicknesses 8: and S,* defined by 

It may be seen from figure 4 that both ST and 8: develop sharp spikes at t +- t,, with 
8: becoming large and negative. Using (1 l), it is easily shown that -+ - U,( y - 6:) and 
$ - qm(y-8; )  as y- fm and consequently 

where the fact that UL+ ern = 0 for the present problem has been used; here the 
primes denote differentiation with respect to x. In (61), the contribution associated 
with 8: is negative for the times depicted in figure 4(b) with t > 3 (except in the 
immediate vicinity of the cylinder). Near the separation point x = x,, the first term in 
(61) is positive for x < x, and negative for x > x,, while the second term is negative. 
Thus the normal outflow from the boundary layer is diminished for x < x, by the 
second term in (61) while the inflow for x > x, is enhanced. This behaviour suggests 
why the eruptive response in the three-dimensional problem is relatively weaker than 
the corresponding event in the two-dimensional problem. 
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FIGURE 4. Temporal development of the (a) streamwise and (b)  cross-stream displacement 
thicknesses; plotted curves are at t = 2, 3, 4, 4.5, 5 ,  and t, = 5.2. 

The determination of the time of singularity, as well as the accurate evaluation of the 
solution properties as t + t , ,  was found to be considerably more challenging than the 
two-dimensional problem (to be discussed in $6). According to (59), a singularity is 
encountered when both ai/@ and a i / a f  vanish simultaneously at a specific particle 
denoted by (is, f s ) .  A number of methods of evaluation of the time of singularity were 
tried, but the most reliable method appears to be based on tracking the evolution of 
the two curves d i / a i  = 0 and a i / a f  = 0 and determining when and where these curves 
first t9uch. The curve a,f/af = 0 appears at an early stage in the calculation; however, 
ai/a[ = 0 does not develop until the: latter stages, and unless some care is taken, it 
appears as a narrow slit in the ( & f )  computational plane. For example, when 
the algebraic transformation (281 was used in the Lagrangian calculations, the line 
ai/a[ = 0 first appears in the ([, +)-plane as a very narrow vertical slit of almost 
zero thickness, which does not change appreciably as t --f t,; this means it is very 
difficult to resolve accurately the curve ai/@ = 0 (particularly near its vertical 
extremities), and this makes the time when it touches the curve ai/c?$ = 0 uncertain. 

In order to rectify this difficulty, it is necessary to find a means to concentrate mesh 
points in the [-direction in the vicinity of the fluid particle which ultimately becomes 
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Tangent 
Algebraic ~ 

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

Points in [ 201 20 1 20 1 201 40 1 
Points in f 101 101 101 101 20 1 
Time step 0.001 0.001 0.001 0.001 0.0005 

k,  
5, 

- 1 /2n 11271 2 h  1 171 
- -1.8 - 1.83 - 1.8265 - 1.8265 

TABLE 1. Details of the meshes used for Lagrangian calculations for the upstream 
plane-of-symmetry flow 

compressed to zero streamwise thickness at separation. To this end, consider the 
following transformation : 

where for 6 = - 1 to correspond to j = 1, 

<* 71 

which is analogous to (29) and (30). Here k,  is a parameter controlling the mesh 
distribution, and the range (- cc, - 11 in 6 is transformed by (62) to (0,1] in i, with a 
concentrated mesh near EV in physical space. Since the <-location of the particle which 
is ultimately compressed is not known a priori, it proved necessary to adopt the 
iterative strategy outlined below. Suppose the calculation was switched from the 
Eulerian to the Lagrangian mode at to; the Lagrangian calculation was then continued 
using a remeshing procedure every 0.5 units in time and the equivalent of the algebraic 
transformation (28) in <. This mesh is designated as mesh 1 and a calculation was 
carried out on it until a singularity was predicted. From this calculation, an estimate 
of ts = - 1.8 was obtained. The Eulerian calculations were initiated once again from 
impulsive start with xo = 6, = - 1.8 and k,  = 2 / x  (for reference, see (29) and (30)). The 
Eulerian solution at to was then used as initial conditions to start the Lagrangian 
calculations with 5, = 6, and k,  = 2/n. This calculation with the tangent 
transformation and aforementioned values of E0 and k, is subsequently referred to as 
mesh 2. The solution with mesh 2 produced a refinement for <, which was subsequently 
used to initiate a third computation. In this manner, a total of five meshes were used; 
the stretching factor k, is evaluated from (55) .  Note that meshes 3-5 utilize the 
remeshed solution from mesh 2 as an initial condition at t = 4 (rather than returning 
all the way back to impulsive start in Eulerian coordinates). The mesh sizes listed in 
table 1 were found to produce accurate results; furthermore, the local packing 
algorithm (62) was judged to be much more effective for the success of the scheme than 
simply increasing the number of spatial points in the streamwise direction. 

The results of the calculation are shown in table 2. It may be seen that the results 
from mesh 1 are in reasonable agreement with each other for different values of to;  
however, the results eventually converge to somewhat different values from mesh 1 as 
the mesh is systematically refined. The final estimated values are t ,  = 5.2, x, = - 1.86, 
us = -0.18 and Gs = 0.52. Consequently the fluid particle which is compressed at 
separation is moving upstream and expanding away from the symmetry plane at t,, 
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0 1 

FIGURE 5 .  Plotted curves ai/@ = 0 and a i / a f  = 0 just prior to predicted separation 
time for to = 4: (a) mesh 2, (b)  mesh 4. 

t o  Mesh 1 Mesh 2 Mesh 3 Mesh 4 

t ,  = 5.432 5.286 5.251 5.219 
X, = - 1.900 - 1.876 - 1.869 - 1.864 
U, = -0.185 -0.192 -0.175 -0.185 3.5 { 

4.5 { 

~5~ = 0.506 0.535 0.510 0.526 

t ,  = 5.435 5.290 5.218 5.203 
~ , = - 1 . 9 0 0  -1.876 -1.863 -1.861 
U, = -0.185 -0.189 -0.189 -0.182 4.0 [ 
GS = 0.506 0.530 0.531 0.524 

t, = 5.450 5.303 5.241 5.224 
X ,  = - 1.902 - 1.878 - 1.867 - 1.864 
U, = -0.185 -0.184 -0.191 -0.183 
Kjs = 0.505 0.523 0.531 0.522 

TABLE 2. Calculated rcsults for the plane of symmetry 

Mesh 5 

5.183 
- 1.857 
-0.185 

0.529 

5.191 
- 1.858 

0.529 
5.217 

-0.185 

-1.863 
-0.187 

0.529 
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FIGURE 6 .  Contours of constant i in the computational plane. 

as suggested by the temporal development of the displacement functions shown in 
figure 4. 

The main advantage of the present iterative scheme in determining t, and the 
properties at separation is illustrated in figure 5 .  In figure 5(a), the results of 
a calculation with to = 4 for mesh 2 is shown; the vertical slit represents the curve 
a2/a[ = 0, and at t ,  the curve just touches the curve X/&j = 0 (in the lower half of 
the figure). The situation in figure 5 (a)  constitutes a considerable improvement over that 
which had been obtained using the algebraic transformation mesh 1 ; the algebraic 
mesh emphasizes the region near x = - 1 where exponential growth in the boundary 
layer eventually occurs. Mesh 1 was used in a preliminary calculatiqn to estimate t,; 
the results are not shown here, but it was found that the curve a2/at = 0 appeared as 
a slit of almost zero thickness, which is difficult to resolve accurately. This behaviour 
makes the accurate determination of the instant when the two curves touch 
problematic. Further improvement is evident in the refined mesh 4 calculation shown 
in figure 5(b). As a result of mesh packing near the particle which is eventually 
compressed, the curve aa/at= 0 is now considerably expanded and better defined. 
Thus at separation an accurate evaluation of when the two curves touch at t = t ,  is 
possible. Curves of constant 2 are shown in figure 6 for calculations based on mesh 2; 
the singularity occurs inside a small thumb at [, = 0.535 and fj, = 0.245 (where t,, 
i, denote the location of the particle that undergoes separation at the last remesh, 
which in this case is at t = 5). Note that unlike known two-dimensional realizations of 
separation (Van Dommelen & Shen, 1980, 1982; Peridier et al. 1991), the thumb in the 
x-characteristic surrounding the singular point is very narrow (even though a 
transformation to expand the region near 6, has been employed here). In addition, the 
x-characteristics above the singular point also show a narrowed distention well into the 
upper parts of the boundary layer. 

Calculated results for the temporal development of wall shear stress in the 
streamwise ( T ~ ~  = au/ay at y = 0) and cross-stream (yWz = M / a y  at y = 0) directions 
are shown in figure 7. It may be seen that a local decrease occurs in the streamwise wall 
shear stress and a local increase occurs in the spanwise gradient of the cross-stream wall 
shear stress near separation; however, the behaviour is smooth and as in two- 
dimensional flows (Van Dommelen & Shen 1982; Elliott et al. 1983), the wall shear 
stress is regular as t + t,. A similar behaviour occurs in the wall heat transfer rate aO/ay 
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FIGURE 7. Wall shear stress in the plane of symmetry at t = 2 ,  3, 4, 4.5, 5 and t, = 5 . 2 :  
(a) streamwise shear stress, (b) spanwise gradient of the cross-stream shear stress. 

at y = 0 shown in figure 8 (a), which is also regular but begins to develop a strong local 
minimum at the streamwise location of separation. The reason may be seen in figure 
8 (b) where the constant-temperature contours at t ,  are shown. The dramatic upwelling 
at separation pulls the contours into a narrow streamwise band, and this results in a 
relatively low heat flux at x = x,. Note that to the right of x, the heat transfer rates are 
relatively high especially near the cylinder. Here fluid from the mainstream, having a 
temperature different from that on the wall, sweeps into the corner giving rise to 
enhanced heat transfer through both convection and conduction effects. 

6. The cylindrical ridge 
As indicated schematically in figure l(b), three boundary layers develop in- 

dependently near the circular ridge after the impulsive start. Discontinuities in the 
bottom topography occur at x = 1, and the mainstream velocity distribution for both 
the upstream and downstream boundary layers (regions 1 and 3 in figure 1 b) is given 
by (100). Again the downstream boundary layer experiences a continuously favourable 
pressure gradient and is of much less interest than the upstream boundary layer where 
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FIGURE 8. Heat transfer characteristics in the plane of symmetry. (a) Temporal development of 
surface heat flux at t = 2, 3, 4, 4.5, 5 and t8 = 5.2. (b) Contours of constant temperature at t , .  

Streamwise transformation 

t o  Algebraic Tangent 

t ,  = 2.712 2.714 
1.7 .u, = - 1.602 - 1.603 

U, = -0.355 -0.359 

t, = 2.714 2.717 
- 1.604 
-0.357 

t ,  = 2.722 2.724 
2.3 [xs=- l .605  - 1.606 

-0.358 

2.0 { x, = - 1.603 
ti, = -0.356 

U, = -0.353 

TABLE 3. Calculated results for the circular ridge 
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dP,/dx is Purely adverse. On the half-cylinder itself, the mainstream velocity 
distribution is u, = -2sin6, and as described by Van Dommelen & Shen (1980, 
1982), a separation singularity is encountered at B w 69" at t, z 1.5. Here the objective 
is to determine the evolution of the upstream boundary layer and compare the results 
with both the development on the cylinder itself and the corresponding plane-of- 
symmetry results. 

The equations governing the upstream boundary layer may be obtained from those 
given in 942 and 3 by taking 6, ~m = 0 (for example, in (8) and (37b)). Both the tangent 
transformation (29) and the algebraic transformation (28) were used in the two- 
dimensional problem ; however, because strong exponential boundary-layer growth 
ultimately occurs at the stagnation point at x = - 1, the algebraic transformation was 
found to be preferable since it emphasizes the zone near x = - 1. Again a number of 
mesh sizes were tried as a check on the accuracy and the results presented are based on 
a mesh with 201 and 101 points in the streamwise and normal directions respectively; 
a time step of 0.001 units in both the Eulerian and Lagrangian integrations was found 
to be small enough to ensure grid-independent results. A separation singularity was 
encountered at t, w 2.71 and the relevant calculated values of the solution are given in 
table 3, where again to denotes the time at which the calculation was switched from the 
Eulerian to the Lagrangian system. Lagrangian calculations for the two-dimensional 
problem are much easier than the corresponding plane-of-symmetry problem and re- 
meshing in the Lagrangian formulation was not necessary. In the tangent trans- 
formation, k,  = k,  = 2 / x  was used, and <, was based on the estimate of the singularity 
location obtained using the algebraic transformation; a value of k ,  = 1.0 was used in 
the normal transformation (24b). It follows from table 3 that the estimates oft, = 2.71, 
x, = - 1.60 and us = -0.36 are correct to the digits quoted. The case where the switch 
to the Lagrangian frame was performed at t ,  = 2.3 is believed to be somewhat too late, 
with the Eulerian solution possibly containing significant error due to the sharp spatial 
gradients which develop by that stage. Although both the algebraic and tangent 
transformations give similar results for the separation properties, the algebraic 
transformation yields much smoother answers at the stagnation point where the 
boundary-layer thickness is growing very rapidly near the end of the calculation. The 
work of Van Dommelen & Shen (1980, 1982) shows that the boundary layer on the 
half-cylinder will become eruptive at t w 1 S, leading to an ejection of vorticity into the 
mainstream; however, the eruption is predicted on the rear portion of the cylinder, and 
the subsequent alterations produced in the external flow should not be substantial in 
the inviscid flow region above the upstream boundary layer. The present calculations 
show that the upstream boundary layer will become eruptive at t = 2.71, which is almost 
twice as long as the time required for the eruption on the cylinder itself. Consequently, 
it might be expected that in a high Reynolds number flow, almost periodic boundary- 
layer eruptions will be observed in this geometry with roughly twice as many ejections 
of vorticity occurring on the cylinder as in the upstream boundary layer. 

Calculated streamline patterns are shown in figure 9. A reversed-flow region 
develops in the corner starting at t = 0.332 and grows substantially with the passage of 
time. The situation at t = 1.5 is shown in figure 9(a)  where one of the stagnation points 
associated with the region of reversed flow has moved far from the bottom wall along 
the line x = - 1 ; the semi-similar solution on x = - 1 corresponds to that described by 
Proudman & Johnson (1962) (see also Van Dommelen & Shen 1985) and here the 
boundary-layer thickness eventually grows exponentially with time. The other 
stagnation point on the wall moves progressively upstream as the reversed-flow region 
propagates away from the obstacle. At t = 2.4, a kinking of the streamlines may be 
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FICURC 9. Instantaneous streamlines in the boundary layer upstream 
(a) = 1.5, (b) t = 2.4, (c) t = t ,  = 2.71. 

of a circular ridge: 

seen in figure 9(b) on the upstream side of the reversed-flow region; by t = 2.71 a 
separation singularity occurs with the boundary-layer flow focusing into a narrow 
eruptive band as shown in figure 9(c).  Since u, < 0, this situation is a case of ‘upstream- 
slipping’ separation as is evident from the temporal development of the displacement 
thickness ST shown in figure 10. Computed values of the wall shear stress show a 
smooth and regular behaviour at t +- t,, as predicted by Elliott et al. (1983) and Van 
Dommelen & Shen (1980, 1982). A similar smooth behaviour occurs for the wall heat 



24 R. I .  Puhuk, A .  T.  Degani and J. D. A .  Wulker 

~~, -~ 

-3 -2 -I 
x 

FIGURE 10. Temporal development of the displacement thickness for t = 1 ,  1.5, 2, 2.4, 2.6 
and t ,  = 2.71. 
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FIGURE 11. Temporal development of the surface heat flux for t = 1 ,  1.5, 2, 2.4, 2.6 and t8 = 2.71. 

flux whose temporal development is shown in figure 11. Jt may be noted that again 
relatively high values of heat flux are achieved near the inviscid stagnation point, while 
the separation leads to a region of progressively decreasing heat flux that continuously 
moves upstream. 

7. Conclusions 
In the present study, the nature of the unsteady boundary-layer flow upstream of an 

upright cylinder mounted on a flat plate and a two-dimensional circular ridge has been 
considered. It has been shown that a separation singularity develops in the boundary- 
layer solution at a finite time after the impulsive start in both cases. This indicates that 
a boundary-layer eruption and subsequent unsteady viscous--inviscid interaction will 
occur; thus the flow upstream of such obstacles is inherently unsteady for large 
Reynolds numbers. In the three-dimensional problem, separation was found to occur 
on the upstream symmetry plane of the obstacle in a manner consistent with recent 
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experimental observations and which is suggestive of the process by which necklace 
vortices seem to originate near the symmetry plane (Smith et al. 1991 ; Doligalski et al. 
1994). To understand the complete development, it will eventually be necessary to 
evaluate the outboard development of this process in the endwall boundary layer. It 
may be noted that three-dimensional unsteady boundary layers can develop complex 
separation patterns (see, for example, Affes, Xiao & Conlisk 1994) and especially 
complicated topologies are expected in the present three-dimensional problem (Smith 
et al. 1991). 

It is worthwhile to remark that the corresponding separation in two dimensions for 
the circular ridge is a much more dramatic and stronger event than for the symmetry 
plane, even though the streamwise mainstream velocity is the same for both flows. In 
the two-dimensional problem, the Eulerian calculations fail to converge before 
separation, and this failure gives a clear signal that a switch to the Lagrangian 
formulation is needed. On the other hand, the failure of the Eulerian scheme in the 
plane of symmetry is much more subtle with small wiggles developing in the numerical 
solution that cannot be removed by further grid refinement. Indeed, the Eulerian 
calculations could be carried on well beyond t ,  without obvious difficulties, producing 
apparently plausible answers that at first glance even appear to be consistent with 
experiment; for example, a computed Eulerian solution at t = 6 suggested that the 
spiral focus (cf. figure 2f) continues to move further upstream with a second spiral 
focus developing behind it. Of course, the Lagrangian calculations clearly show that a 
singularity occurs at t, = 5.2, thereby terminating the validity of the present boundary- 
layer formulation and pointing to a need for an interactive strategy with the 
mainstream flow. A main point here is that it is very much easier to obtain incorrect 
results using the Eulerian formulation with a fixed grid in the three-dimensional flow 
than in two dimensions; at the least, some type of adaptive grid (see, for example, 
Adams et al. 1995) would be necessary to improve the performance of the Eulerian 
method. 

Although the present calculations have been carried out for two specific obstacles, 
experiments and theoretical considerations suggest that similar behaviour will occur 
over a range of shapes that have an O( 1) discontinuity in bottom topography where the 
obstacle is joined to the wall (Doligalski et al. 1994). The inviscid solution for lenticular 
two-dimensional obstacles is given by Milne-Thomson (1962, pp. 171-175) and three- 
dimensional obstacles such as airfoil shapes and rectangular blocks will give rise to an 
adverse pressure gradient on the symmetry plane similar to those considered here; 
hence the boundary-layer structure for a variety of obstacles will be similar to that 
shown in figure 1, and the boundary-layer response should be analogous. The 
calculated results for heat transfer indicate that the region upstream of obstacles will 
be an area of relatively high thermal stress. This is because the separation process that 
is expected to occur intermittently in such regions gives rise to alternate zones of 
relatively high and low heat transfer; the heat transfer is always largest adjacent to the 
stagnation point, but is dramatically reduced in a narrow streamwise band near 
separation. An additional contributing factor to thermal stress is that the zone of low 
heat transfer is in continual motion upstream as the separation process develops during 
each cycle. 

The authors are grateful for support of this work under AFOSR Grant Numbers 
91-0218 and F49620-93-1-0217. 
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Appendix 

described by relations of the form 
The transformation to the Lagrangian frame and the inverse transformation may be 

[$I = A [ 3  = B  E] 9 (A 1 a, b)  

where A and B are defined by 

5% t y  t* 

L cy 6 
A = ;] 9 B =  [h v y  .] (A2a,b)  

Here the subscripts denote partial derivatives, and it is evident from (A 1) that 
B = A-l. Using (33) which pertain to a symmetry-plane flow, an expression for A-l 
may be obtained by inversion of (A2a), namely 

& X& -X(Yc+Ypc . (A 3) I J o  l [  0 x5y7l-xay5 

Y,Zc -x?lzc x,yc-y,xc 
B = -  -)I 

Here J = IAl is the Jacobian of the transformation given by 

Using (A3), it is easily shown that the gradients transform according to 

Upon substitution of these relations and the Lagrangian definitions of velocity 

into the continuity equation, it is easily shown that on the symmetry plane 
aJ/at' = 0. Since the particle positions are defined at some initial instant by 

x=5, y = v ,  z = L  (A 7) 

it follows from equation (A4) that J = 1 for all t'. Consequently, from (32) and (A4), 
the continuity equation in the plane of symmetry is given by (36). 

The Lagrangian time derivative is related to the substantive derivative in the 
Eulerian formulation by 

a a a a  a 
at' at ax ay aZ' -- --+u-+u--t-w- 

and using (A 5b)  (with J = l), as well as (34) and (35), it is easily shown that the 
momentum and energy equations are given by (37). 



Unsteady separation and heat transfer upstream of obstacles 27 

R E F E R E N C E S  

ACARLAR, M. S. & SMITH, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 
1 .  Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 1-41. 

ADAMS, E. C., CONLISK, A. T. & SMITH, F. T. 1995 Adaptive grid scheme for vortex-induced 
boundary layers. AIAA J .  33, 864-870. 

AFFB, H., XIAO, Z. & CONLISK, A. T. 1994 The boundary-layer flow due to a vortex approaching 
a cylinder. J.  Fluid Mech. 275, 33-57. 

COWLEY, S. J., VAN DOMMELEN, L. L. & LAM, S. T. 1990 On the use of Lagrangian variables in 
descriptions of unsteady boundary-layer separation. Phil. Trans. R. Soc. Lond. A 333, 343-378. 

DOLIGALSKI, T. L. & WALKER, J. D. A. 1984 The boundary layer induced by a convected two- 
dimensional vortex. J.  Fluid Mech. 139, 1-28. 

DOLIGALSKI, T. L., SMITH, C. R. &WALKER, J. D. A. 1994 Vortex interactions with walls. Ann. Rev. 
Fluid Mech. 26, 573-616. 

E m o m ,  J. W., COWLEY, S. J. & SMITH, F. T. 1983 Breakdown of boundary layers: (i) on moving 
surfaces; (ii) in self-similar unsteady flow; (iii) in fully unsteady flow. Geophys. Astrophys. Fluid 
Dyn. 25, 77-138. 

ERSOY, S. & WALKER, J. D. A. 1987 The boundary layer due to a three-dimensional vortex loop. J .  
Fluid Mech. 185, 569-598. 

HUNG, C. M., SUNG, C. H. & C J ~ N ,  C. L. 1991 Computation of saddle point of attachment. AZAA 
Paper 91-1713. 

MILNE-THOMSON, L. M. 1960 Theoretical Hydrodynamics, 4th edn. Macmillan. 
PERIDIER, V. J., SMITH, F. T. & WALKER, J. D. A. 1991 Vortex-induced boundary-layer separation. 

Part 1: The limit problem Re- tm.  J.  Fluid Mech. 232, 99-131. 
PROUDMAN, 1. & JOHNSON, K. 1962 Boundary-layer growth near a rear stagnation point. J.  Fluid 

Mech. 12, 161-168. 
SEARS, W. P. & TELIONIS, D. P. 1975 Boundary-layer separation in unsteady flow. SIAM J .  Appl. 

Maths 28, 215-235. 
SMITH, C. R., FITZGERALD, J. P. & G ~ c o ,  J. J. 1991 Cylinder end-wall vortex dynamics. Phys. 

Fluids A3, 2031. 
VAN DOMMELEN, L. L. & COWLEY, S. J. 1990 On the Lagrangian description of unsteady boundary- 

layer separation. Part 1. General theory. J.  Fluid Mech. 210, 593-626. 
VAN DOMMELEN, L. L. & SHEN, S .  F. 1980 The spontaneous generation of the singularity in a 

separating boundary layer. J.  Comput. Phys. 38, 125-140. 
VAN DOMMELEN, L. L. & SHEN, S. F. 1982 The genesis of separation. In Proc. Symp. on Numerical 

and Physical Aspects of Aerodynamic Flow (ed. T. Cebeci), Lung Beach, Calfornia, pp. 283-3 1 1. 
Springer. 

VAN DOMMELEN, L. L. &i SmN, S .  F. 1985 The flow at a near stagnation point is eventually 
determined by exponentially small values of velocity. J.  Fluid Mech. 157, 1-16. 

VISBAL, M. R. 1991 Structure of laminar juncture flows. AZAA J .  29, 1273-1282. 




